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Reactance and Resonant Circuit

The  determination  of  capacitive  or  inductive  reactances  as  well  as  the  resonant  frequency  of
resonant circuits are part of the basics of the experimental radio amateur. 
The tool uses the usual shortwave units MHz, μH and pF.

After  zooming  in  on  the  window,  after  entering  the  quality  factors  of  the  coil  and  capacitor,
resonance  resistance,  operating  quality,  3dB  bandwidth  and  volume  attenuation  can  also  be
analyzed for different configurations of series and parallel resonant circuits.

Example 1:
What is the reactance of an inductor of 10μH at 7.1MHz? 
How large does the capacitance have to be
to form a resonant circuit? 

With the check mark in front of the input
field for the frequency it is achieved that not
the frequency, but the capacitance is
recalculated. 
The reactance appears synchronously with
the change of L or C, without you having to
click a result button.

However, without changing the frequency you can also enter a different reactance to make the 
resonant circuit impedance higher or lower and calculate the required LC pair.

Example 2:
The resonant circuit is to be operated as a
suction circuit between a voltage source with
50Ω internal resistance and an equal load
resistor.
What is the resonant resistance, bandwidth and
transmission attenuation if the coil quality is
100 and the quality of the capacitance is 1000?

Enlarge the window by touching it with the
mouse at the bottom of the window and
zooming in. Enter the values for the quality-
factors and for the terminating resistors.  

Click on "ANALYSIS" and select the
configuration "SSK1" (series resonant circuit)
to read the results in the schematic.
In brackets, the 3dB bandwidth (kHz) is printed behind the operating mode QB and the transmission
(%) behind the transmission loss a (dB).
Change the reactance (or L/C ratio) and observe the effects on 3dB bandwidth and transmission 
loss!



Theory

The basis of this fundamental tool is the well-known "Thomson's vibrational equation", as it was
first formulated in 1853 by the brilliant British physicist William Thomson.
Also the unit of measurement of absolute temperature (degrees Kelvin) also goes back to Thomson, 
because as a professor of theoretical physics in Glasgow he was knighted for his outstanding 
services in the fields of electricity theory and thermodynamics and raised to the hereditary peerage 
as Baron Kelvin.
 
The starting point of Thomson's discovery was the
realization that inductors and capacitances also oppose the
electric current, which, however, – in contrast to ohmic
resistance – is frequency-dependent and does not convert
any electrical energy into heat (hence reactance).

The reactance of an inductor L at frequency f is calculated
as:

X L=ω0 L  mit ω0=2π f 0

or in our usual units of measurement:

X L[Ω]=6,28 f 0[ MHz] L[µH ]

For the reactance of a capacitance C:

XC=
−1
ω0 C

or XC [Ω]= −159236
f 0[MHz ]C [ pF]

In the case of resonance, both reactances compensate each other:

X L+XC=0  bzw.  ω0 L− 1
ω0C

=0

The above equation broken down by  ωo gives ω0=
1

√LC
or with ω0=2π f 0 the best-known form of Thomson's resonant equation:

f 0=
1

2π√LC
 

or

f 0[MHz ] = 103

2π √L[µH ]C [ pF ]
= 159,236

√L[µH ]C [ pF]

In practice, inductors and capacitances also have ohmic loss resistances rL or rC, whose ratio to the 
reactant resistors XL or XC is expressed by the quality factors QL and QC.



For an inductor with the series loss resistance rL, the coil quality is:

QL=
ω0 L

r L

The same applies to the quality of a capacitance with the series loss resistance rC:

QC=
1

ω0C rC

The operating mode quality-factor QB of an resonant circuit depends on the reactance (L/C ratio) 
and on rL and rC, but also on the damping influence of the generator resistance RG and the load 
resistance RL.

With                                                X L=XC=ω0 L=
1

ω 0C
=√ L

C

applies to the series resonant circuit:

QB=
√ L

C
r L+rC+RG+RL

A similar formula could be given for the parallel resonant circuit, but the serial loss resistances must
first be transformed into their parallel equivalents.

The operating mode quality-factor QB allows direct conclusions to be drawn about the selection 
properties of an resonant circuit, so the following applies to its 3dB bandwidth:

B3dB=
f 0

QB

With increasing operating quality, the bandwidth decreases, i.e. the resonant circuit becomes 
narrower. 
At the same time, however, the losses increase, as the transmission (power transmission) is also 
reduced. 
The transmission of a two-pole (e.g. resonant circuit) connected between generator resistance RG 

and load resistor RL is calculated from the ratio of the power converted at RL to the maximum 
available generator power:

vp=4|vU|
2 RG

RL

where |vU| the voltage gain, i.e. the amount of the ratio between the voltage at the load resistor RL 
and the generator voltage U0:

vU=
UR L

U0

The transmission attenuation results from the decadal logarithm of the transmission:

a[dB ]=10 log(v p)


